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Keywords: In this paper, we show the existence of Landau constant for functions with logharmonic
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1. Introduction

Let H(U) be the linear space of all analytic functions defined on the unit disk U = {z : |z| < 1}. A logharmonic function is a
solution of the nonlinear elliptic partial differential equation

E__f

= =0a—=,

ff
where the second dilatation function a € H(U) such that |a(z)| < 1 for all z € U. Suppose that fis univalent logharmonic func-
tion with respect to a with a(0) = 0. If f{0) = 0 then f can be expressed as

(1.1)

f(z) = h(z)g(2), (1.2)

where h(z) =z + 307 ,a,2" and g(z) = 1 + Y07, b,z". In this case, F({) = log f{e*) is univalent and harmonic in the half-plane
{¢;Re({) < 0}, such functions play an important role in the theory of minimal surfaces having periodic Gauss map (for details
study of harmonic functions and logharmonic functions to be found in [1-5,7,8,10]). If O ¢ f{U), then log (f(z)) is univalent and
harmonic, and the representation of f as in (1.2) with h and g are nonvanishing analytic functions in U.

We consider the class of all continuous complex-valued function F=u +ivin a domain D C C such that the Laplacian of F
is logharmonic. Note that log (AF) is harmonic in D, if it satisfies the Laplace’s equation A(log (AF)) =0, where

Py
A= 4%'

In any simply connected domain D we can write

F=r’L+H, z=re" (1.3)
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where L is logharmonic and H is harmonic in D. It is known that L and H can be expressed as,
L=hg, (1.4)
H= hz -+ g,

where hq, g1, h> and g, are analytic in D. Denote by L;,(U) the set of all functions of the form (1.3), which are defined on the

unit disk U (for details see [1]).
Denote the Jacobian of W by Jy, then

Jw =W, > — W, . (1.5)
Denote

;“W = |WZ‘ - |W2|7

Aw = [We| + [We|, (1.6)

then _]W =w - Aw.
Lewy [7,10], showed that a harmonic function W is locally univalent if Jacobian of W, J,

Jw #0. (1.7)

The classical Landau theorem states that if fis analytic in the unit disk U with f{0) = 0, f(0) = 1 and |f(z)| < M for z € U, then
fis univalent in the disk U, = {z: |z| < p,} with

1
Po=—"—"F7——
M+ VM1

and f(U,,) contains a disk Ug, with Ry = Mpj. This result is sharp, with the external function f(z) = Mz %2 (see [12]).

Z)

Chen et al. [6] obtained a version of the Landau theorem for bounded harmonic mappings of the unit disk. Unfortunately
their result is not sharp. Better estimates were given in [9] and later in [11].

In specific, it was shown in [11] that if fis harmonic in the unit disk U with f{0) = 0, J{0) = 1 and |f(z)| < M for z € U, then fis
univalent in the disk U,, = {z: |z| < p;} with

2V2M

V' + 8M?

and f(U,,) contains a disk Ug, with Ry = 7 — 2le’i1 . This result is the best known but not sharp.

We now quote the Schwarz lemma for harmonic mappings which will be used in proving the coming theorems:

pr=1-

Lemma 1 (Schwarz lemma). Let f be a harmonic mapping of the unit disk U with f{0) =0 and f(U) c U. Then
4 4
<= <=
If(2)] < p- arctan|z| p- |z|,

4(0) < (18)

Al

In Theorem 1, we consider the problem of minimizing the area for the case F(z) = r*L(z). In Theorems 2 and 3, we show
that Landau’s theorem extends to bounded functions with logharmonic Laplacian.

In Theorem 2, we show that if L be logharmonic in U such that L(0)=0, J;(0)=1 and |L(z)| < M for z € U then there is a
constant 0 < p, < 1 so that F=r2L is univalent in the disk |z| < p;, where p; is the solution of the equation

1 Py
1=2p,M -2M
Tlees -

and f(U,,) contains a disk U, with

Pl
Ro = pi—2M 2
2

This result is not sharp.

In Theorem 3, we show that if F is in the class L;,(U), such that L(0)=K(0)=0, J{0)=1 and |L(z)| and |K(z)| are both
bounded by M for z € U then there is a constant 0 < p3 <1 so that F is univalent in |z| < ps. In specific, p5 satisfies

i 03 1 >
— —2p;M - 2M + -11=0
M ((1 —p3)? (- py)?
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and F(U,,) contains a disk Ug,, where

_ T 1 P3
R374Mp3 p3M1 e 2M
This result is not sharp.
2. The Case F=1?G
First we establish a lower bound for the area of the range of F(z) = r’L(z).

Theorem 1. Let F(z) = ’L(z), where L = hg is starlike logharmonic in U. If g(0)=1 and h'(0)=1. Let A(r,F) denotes the area of
F(U,), where U,={z : |z| <1}, for r < 1. Then,
2 > % g8

A(T7F)>2 2r+r -‘r———"rg—g

S+3 +21n(1+r)}.

5
Equality holds if and only if Lo(z) = r? (( )) or one of its rotations.

Proof. Let F(z) = r’L(z), where L(z) = h(z)g(z) be a logharmonic mapping defined on the unit disc . Then L satisfies (1.1) for
some a € H(U) such that |a(z)] <1 and a(0) = 0. Hence,

2 2 T 22 |2l — 2Ls any 12 2
AR = [ [ Jeaa= [ [ QP = FPyrarao > [ [ 2lLPlePRe F T P ~ L pdodp 2.1)
Ur Ur

By Schwarz lemma, we have

(Le* = |L2) = L1~ [al*] > IL*[1 — [pI"). (22)
Since L is starlike logharmonic mapping, it follows from [3] that y/(z) = Z" is starlike. Therefore, we have

zL, — zL, 2y (z ) —-p
Re==2 £ —Re 2.3
I v © 1+,0 23)
Substituting (2.2) and (2.3) in (2.1) we obtain that
r 21 _ p 2n 5 r s ) 2n )
A(r,F) >/ 20 —/ L] dedp+/ p5(1=p )/ IL,*dodp. (2.4)
0 1+pJo 0 0

Writing hg = z[1 + Y7 cn2"],
we get

/ L[2d6 — 27mp?
0

1+Z|cn\2 2"} (2.5)

n=1

Also, writing h'g = [1 + 357 dnz"],
we obtain

/0 IL,[2d0 = 27 1+Z|d 2 2“] (2.6)

Combining (2.4), (2.5) and (2.6), we deduce that A(r,F) > 27 [’ [p (1+p>+ p°(1 - p)]dp 2n[l<_2r+r2 2,

Cr4r 24 2In(l+r). O

In the next theorem we give a Landau’s theorem for functions with logharmonic Laplacian of the form F = r?L(z).

Theorem 2. Let L be logharmonic in U such that L(0) =0, J,(0) =1 and |L(z)| < M for z e U. Then there is a constant 0< p; <1 so
that F=72L is univalent in the disk |z| < po, p2 is the solution of the equation 1 = 20M 1, - 2M i pz —E——and f(U,,) contains a disk

1-p2
g, With Ry = p3 — 2M+ pz . This result is not sharp.

Proof. Fix 0< p <1 and choose zy, z, with z; # z,, |z1| < p and |z,| < p. Then we have

Fz) -~ Flzo) = [

[z1.22]

F,(2)dz + F,(2)dz = / (zL + *h'g)dz + (2G + r*hg))dz,

[z1.22]
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where [z1,25] is the line-segment from z; to z;, z=tz, + (1 — t)z; and 0 < t < 1. Hence

/[ L)@tz +2d2) + /[ gz s /[ ]rzhg’dz'
/[ ]r2d2+/[ ]L(z)(zdz+zd2)+/[ ]rz(h’g—l)dz+/[ gz
/[“]rzdz 22221|i1(an ]rz”dt‘22221i(an|bn|)n A
> |z, — 7] U/ﬁ>1 rzdt’ - 2,0M§p2“‘2 /01 rzdt‘ - 2M§n,02”‘1 /0] rzdt”

/lrzdt‘lsz LI VR
: T=p2 Ty

F(z1) - F(z)| =

/ (2L + 1PHg)dz + (zL + 1*hg))dz
[21,22]

1
> r2n+l dt‘

> |z — 74|

Choose p so that 1 —2pM 1 — 2M =0.
Then F is univalent in |z| < pz and furthermore, we have for |z| = p,,

2n1_ ,02 —
MZ,O = M]_pg—Rz. O

3. The general case F=r’L+ K
Next we give a Landau theorem for functions of logharmonic Laplacian of the form F = r°L + K:
Theorem 3. Let F=1°L+K, z=re" be in Liy(U), where L is logharmonic and K is harmonic in the unit disc U such that

L(0)=K(0)=0,]{0)=1 and |L| and |K| are both bounded by M. Then There is a constant 0 < p3 < 1 so that F is univalent in |z| < ps.
In specific, p3 satisfies

p3 1 )
—2p;M —2M + -1]=0
an 2 ((1—p§)2 (1-py)?

and F(U,,) contains a disk Uy,, where

M o £

R; =
’ 1-p3 1-p;

L
4Mp3

Proof. Let L(z) = h(2)g(2) = (z+ 35 ,an2") (X obnz") and K(z) = 3 gcaz" + > g dnz". Fix 0<p <1 and choose z;,z, with
Zy # Z2,|z1] < p and |z3| < p. Then

F(z1) —F(z) = / F,(z)dz + F;(2)dz = / (ZL+1*h'g + K;)dz + (zL + r*hg’ + K;)dz,

[z1.,22) [21.,2]

where [z1,2;] is the line-segment from z; to z,.

Note that
Jr(0) = [K-(0)]” — [Kz(0)]* =Ji(0) =1 (3.1)
and hence
, 1 T
(0 =176 Z am
Then

F(z1) - F(z2)| =

/ (K,(0)dz + K, (0 dz|—‘/ 2)(2dz + 2d2) + / Pl (2)g@)dz + h(2)g @)dz)
[21.23] [21.,25] [21,22]

+ (K:(2) — K,(0))dz + (Kz(2) — K(0))dz|

[z1.25]

> |z, — 21 (7«(0) —2pM -2 Z(Ianl\bnl)npz”+l = (leal + Idnl)np"l)
n=2
> |z, — 21| ( —2pM — 21\/12 np*+ — 21\/12 np"‘])
n=1 n=2

— |z — 71 oM —2m(— 1y
= |43 14M ,0 (1—/)2)2 (1_p)2 .
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Clearly there is a p so that |F(z;) — F(zp)| > 0. Let p3 be the largest such p. In other words, choose p; >0 so that

T 03 1
— —2p,M —2M + -1 =0
M (1-p3)°  (1-py)°

For |z| = ps,

F@)| > laz+dizl - p3l(z+) a2 | [ D buz? || = > caz" + do?"| >mp3—p§MZp§”—2MZp§
n=0 n=2 n=0 n= 2

n=2

o 1 P
>4Mp3 p3M1_p§ 2M1_p37R3. O
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